“e

— e
[ —

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-770

C'— Compatible Interpolation
Over a Triangle

(YASA-CE~=14794€) C SLPER 1:

COMEATIELE N76-2
INTEFFCIATICN CVER 2 TRIANGLE (Jet §76-23920

Prcpulsion Lab.) 3¢ I HC 3$4.00 CSCL 122

Unclas
G3/64 28206

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

May 1, 1976




FR LRGeS e e A (m-,-ml s e

'S [ 4

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-770

C'—Compatible Interpolation
Over a Triangle

C. L. Lawson

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

May 1, 1976

E

;

<
;
!
]
%
kS
3
i
3
}




/
E:
ki
i
Preface i
!
The work described herein was performed by the Data Systems §
F - Division of the Jet Propulsion Laboratory. ;
%, &
i
] i
] ;
5 {
] :
{ i
,: 3
;
é
:
¥ ;
! :
f !
!
i
3
] 3
¢
£
E
3
e v B
i
L]
3
3
¥
B

JPL Technical Memorandum 33-770 iid
¥



T R PR GIE T RITI  ”

AT S

F

e
b
3‘"
i
4
y
»

Contents
Introduction
2. The problem of C1 - compatible interpolation
over a triangle
3. Some observations on one-dimensional Hermite

cubic interpolation

4. Coordinate systems over plane triangles

5. Constructing a solution

6. Correcting the normal derivatives of g1=r2r3(r2-r3)
7. A set of rational correction functions, CH

8. A set of piecewise cubic correction functions, G

9. Transforming formulas to algorithms

10. The method described in Go&l [1968]

11. Summary of operation counts

References

JPL Technical Memorandum 33-770

15
19
22
24
27
31
33
34

PR RS

Mhﬁﬂi AN

i B,

kit Minte.

[T

4Ty o

R

e e e Tm %



vi

—_— —

—

Abstract

An elementary derivation and a complete description are given of an
algorithm for interpolation over a plane triangle when function values
and first partial derivatives are given at the vertices. The method
gives C° continuity witt. neighboring triangles.

The interpolation method is mathematically equivalent to one that has

been discussed previously in the literature; however, the algorithmic
form given here is more efficient than has previously been described.
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Cl -~ Compatible Interpolation Over A Triangle

1. Introduction

The problem treated in this report has been treated by numerous
authors. See Birkhoff and Mansfield [1974] for extensive discussion of

this and closely related problems and for other references, Cl inter-

L1

polation over triangular grids has application in structural analysis via

T

. finite element methods and in the computerized representation of surfaces
for computer aided design.
The problem also arises in diverse scientific and engineering fields
] where it is useful to be able to construct a smooth surface that passes
through a finite set of observed or computed values of some function
1 z = f(x,y). In these data-fitting applications, the desired end-product is
often a contour plot of the interpolated function.

In this report, we give an elementary derivation and a complete algor-
ithmic description of an interpolation method that is mathematically equiv-
é alent to one that is mentioned by Birkhoff and Mansfield, [1974], and spec-
ified in detail by J.-J. Goél, [1968]., Goél attributes the method to Clough
and Tocher [1965] and Zienkiewicz [1967].

The algorithmic form in which the method is given here is more

iai

r
PPNEDE N P ICRAITTIIS

efficient for solving the interpolation problem than the form given by Goél
[1968]. It is my present conjecture that one cannot expect to discover an
algorithm for this problem that is significantly more efficient than the one
given here. Other reports, yet to be written, will deal with the integra-

3 tion of this interpolation algorithm into a set of subprograms for constructing

- a triangular grid, Lawson [1972], and then doing look-up, C1 interpolation,
and contour plotting for a function, 2z = f(x,y) , whose values are given at a
. finite set of points.
The author thanks Dr. Fred T. Krogh for numerous fruitful dis- 4
cussions during the exploratory phase that preceded the writing of this §

paper and for a critical reading of the paper that produced numerous im-

provements.

JPL Technical Memorandum 33-770 1




2. The problem of C1 - compatible interpolation over a triangle

Assume that values of a function, f, and its first partial derivatives,
f andf , are given at the three vertices of a triangle, T, in the (xy)-plane.
We wish to define a function w(x,y) for (x,y) in the triangle, T, that will

agree with this given data.

fz, ‘.‘(,Z' fy'z

With nine items of data being given we may anticipate that the inter-
polation method can be required to be exact for all polynomial functions
of degree up to two, but not for all cubic functions, since the set of quad-
ratic functions in two variables is a six-parameter family while the set of
all cubics is a ten-parameter family. We will impose the requirement
that the method be exact for quadratic polynomial data.

Furthermore we want the interpolation method to have the property
that if it is applied to two adjacent triangles having an edge in common
then function values and the first partial derivatives of the two interpolated
functions will be identical along the common edge. Thus the method can
be used for interpolation over a triangular grid, and the surface defined by the
totality of the locally interpolated functions will have Cl continuity over
the entire region covered by the grid.

A convenient way of assuring that the interpolated functions on adjacent
triangles have the same values and first partial derivatives along the com-
mon edge is to require that the values and first partial derivatives of the
interpolated function along any edge must be determined only by the data
given on that edge, i.e. the data given at the vertices at the ends of that

edge.

JPL Technical Memorandum 33-770
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Relative to a particular edge, say S,s the given partial derivatives at
vertices V, and V3 can be rotated to give partial derivatives tangential to
the edge and normal to the edge at v, and V3. A fairliy natural approach is

to define values of w along side S1 by Hermite cubic interpolation matching

F AU ST NN TR .Y

the required function values and tangential first partial derivative values
at v, and V3,and to define the first partial derivative of w normal to side

Sl to be a linear function along side Sl’ taking the required values at V

and V3.
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3. Some observations on one-dimensional Hermite cubic interpolation

Consider Hermite cubic interpolation on the unite interval 0 s x <1,
with given data f, and f;, at x =0 and f, and f] at x =1. The cardinal

functions for this data are

(1) @gMx) = (2x¢1)x-1)° \

5 4

(2)  Fglx) = x(x-1)2

0 J/—\,_

0 1
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(3 ) ? (x) = ‘Po(l'x)
] ;
0
]
0 1
i
:
i
¢
3 .
; and
{
.5 |
é
}

(4 ) @ (x) = “Bo(1-x) “&‘J

JPL Technical Memorandum 33-770 5
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The interpolated cubic polynomial is given by
(5)  wix) = £0,(x) + {Ro(x) + £ @(x) + £} 7, (x)

Note that all four of the cardinal functions in this formulation are cubic
polynomials. In our interpolation problem over a triangle we shall find
that cardinal functions of degree higher than two introduce relatively
large increases in computational complexity. Thus it is useful to note
that the solution to the one-dimensional Hermite cubic interpolation
problem can be rearranged (in various ways) to involve at most one
cubic basis function. '

For example, we can use the four functions:

14

(6) ¥)lx) = 1x

JPL Technical Memorandum 33-770
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(8) ¥,00 = x(1-x)

and

(9) ¥300 = 2x(x - F )x-1)
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The same cubic polynomial as is defined by Eq (5) can then be constructed

using the formulas

(10) m = f

£ - £ + £ - 2m
(1) wix) = £g0,00 + 18,00 + 2Ly, x) + —— ¥50%)

Eq (11) is easily derived by constructing the formula in two stages.
The first two terms clearly provide the linear interpolant that matches the
data fo and f1 at 0 and 1 respectively. This linear function has a

slope of m = £, - fo.

Thus, after subtracting this linear function, the remaining problem
is to determine a cubic function having zero values at the endpoints and
slopes of fb - m at 0 and f'l -m atl., Since y, has slopes of 1 and
-1 at 0 and 1 respectively and V3 has a slope of 1 at both 0 and 1 it
follows that the function

(£

o-m)-(f'l-m) (fL, - m) + £} - m)

0 1

(12) —— ¥,00) + > ¥5(x)

will fit the residual data.

Combining this two-stage procedure into a single formula gives Eq (11).

An analagour approach of combining a linear interpolant with a quadratic
part and then a cubic part will be de-cribed in Section 5 for the iiterpolation
problem over a triangle, Before commencing this derivation, however, we
must introduce definitions and notation for the coordinate systems we will
use over a triangle, This is the subject of Section 4.

JPL Technical Memorandum 33-770
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4. Coordinate systems over plane triangles

Let T be a plane triangle having vertices Iy \Fx and V,. For
convenience, we will thir ' of these vertices as being labeled in counterclock-

wise order. Final results are not sensitive to this assumed ordering.

The indices in the formulas to follow take the values 1, 2, and 3.
Index arithmetic is to be interpreted as being cyclic over these three values.

For example, if i =3, theni + l1x1landi+2=2.

Let S denote the side of the triangle opposite to vertex V. i Let

e denote the interior angle at vertex V., measured from side S to

Si+l

In a Euclidean (x,y)-plane let (xi, yi) be the coordinates of vertex
Vi’ i = l’ 2’ 3.

Introduce directed edge vectors e, with components u, and \f defined

by
“J X2~ %i4l
(13} e =V Vi42 © )
Vi Yit2 ~ Visl
[ L .
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Denote the Euclidean length of side Si by

(x3’ Y3)
€]

L= el = wie B2 i=1,2,3

Let c, denote the inner product (dot product) of the two edge vectors directed

away from vertex Vi. i.e. the inner procduct of e and RITS I

=l %541 Vi Vied)

=li-lli+l cos 8, i=1,2,3

We notc in passing that the ci's and [i's are related by the equations

) 2
l - -
(15) li T i=1,2,3
2 2 )
(16) li+l B li-l ® %17 S i=z1,2,3
and
2 2 2 .
(17) 2ep =l v 4y - b i=123

Let § denote twice the (signed) area of T. This quantity is repre-

sentable as the scalar cross product of any two edge vectors directed away °

from a common vertex,

10 JPL Technical Memorandum 33-770
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(18) § = Cross (vivi+l’ vivi-l) = Cross (ei~1’ -eiH)

Cross (ei“, ei-l)

YLl Y-l
=d = -
cet %4131 7 Vik1%i-1
Vi¢l  Vi-1

in@, i=12,3

Tangential and Normal Coordinates

Relative to side Si of the triangle, we introduce an orthogonal
coordinate system using coordinates (ti’ ni) where t. is measured along

side Si from Vi+1 and n, is measured positive in the inward normal direction,

The variables (ti’ ni) are related to the variables (x, y) by the

equations
ti . ui vi :»:-xi+1 .

(19) = _ll_ ’ i=1,2,3
oy Vi Y% YYi41

and by the ° ,wvarse equations

JPL Technical Memorandum 33-.770 11
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From Eq.(20) we obtain the partial derivatives

(21)  ax/at, = ui/li
ax/ani = -Vi/li
ay/at, = v./h; i=1,23
ay/an, = u./f,

Barycentric or Areal Coordinates

Let P be a point with coordinates (x, y). Define the three barycentric

(or areal) coordinates of P by:

Cross (V

; j1Vjez VinP) /8

(22) r 2 V

j+l

ijP) /8

Cross (ej.

u, X-X,
-1 J jt+l
8§ “det

M YY1

-1 . '
0 [jryye) - vl )] j =123

Note that the quantity computed by the cross product in the formula
for rj is twice the area of the triangle formed by side j and the point P, Thus
the sum of the three cross products used to compute s Ty and r, must be
twice the area of T. Therefore, with the normalization factor 6'1 appearing
in the formulas it follows that

12 JPL Technical Memorandum 33-770
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(23) rytr,4ry =1

The barycentric coordinates are the unique set of numbers having

unit sum and representing P as a linear combination of VIVZ’ and Vi, thus

X 3
= zr,
=17
y J

Each barycentric coordinate rj is the unique linear function of (x, y)
that is zero along the line determined by side Sj and takes the value 1

at the vertex Vj.

For points inside the triangle T we have all F 2 0 while for points

outside there will be some r. < 0 ., The barycentric coordinates of the

vertices are:
Vl ~ (1,0, G)

V2 ~ (0,1, 0)

V3~ (0,0,1)

Using Eq.(22) we may compute partial derivatives as follows:

24) arj/ax -vj/G

j=1,2,3

arj/ay ujla

Using Eq. (21) and (24) we obtain further partial derivatives:

(25)  arylat, = (ax;/ax)ax/at) + (ar;/ay)ay/aty)

(v + u,v) ! (L8)

Cross (ej. e,) / ([is)

JPL Technical Memorandum 33-770 13
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0 ifj=i
={ 1L, ifi-j=1
-1/1}.l if j-i= 1

(26) arj/ami = (arj/ax)(ax/ani) + (arj/aY)(BY/ani)

= (vjvi + ujui) / (116)

= Dot (e;, e,) / (£;8)

L8

ifi=j

—e, JUB) ifj-i= ]

“ep /(8) ifini=

For more convenient reference, we organize the results of Eq. (25) and (26)

into tables as follows:

arll
arzl

ar3/

arll
ar,/
arsl

14

Table 1 . Values of arj/ati

lat, lat, /3ty

0 L, | -1k,

a0 |l

1/4

1| -1y, | o

Table 2 . Values of arj/ani

/anl' [3ny /3n,
llz/(lIO) 'c3/(126) 'CZ/(I35)
ol l(ly8) | B | e /)
T R AL TAY

JPL Technical Memorandum 33-770
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5. Constructing a solution s

First convert the given partial derivative data at each vertex to partial
derivatives inthe directions of the edges meeting at the vertex. Fori=1, 2, s
and 3, let hi and ki respectively denote the values of the first partial deriva-
tive with respect to ti (the tangential direction along side Si) at ti =0 and

t. = 1 (i.e., at the vertices Viel and vi-l)’

The values of hi and ki are given by

(u, £ + v,

(27) h, i "x, i+l i Ty, it

1

e,

k.

1

(u., £

. + v.
i "x, i-1 v1f

D

y, i-

Henceforth, we may regard fi. hi' and ki for i =1, 2, 3, as defining the data
to be interpolated. We proceed by analogy with the discussion of the one-
dimensional problem in Section 3 . A linear function interpolating the func-

tion values fi’ i=1, 2, 3, is given by
(1) _
) = rlfl + rzf2 + r3f3

Along side Si' this function has slope

(28) my = () - £, /4

JPL Technical Memorandum 33-770 15
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with respect to the tangent1a1 variable t Subtracting the vertex values and

(1

partial derivatives of ¢ ) from the gwen data, we are left with the residual
problem of interpolating vertex values of zero and tangential partial deriva-

tive values of h.-m. and k.-m,, i=1, 2, 3.
1 1 1 1

Let us temporarily restrict attention to one side, say side Sl. On side
S we have r, = 0, r, = 1-r3, and tl Llr3 Note that the quadratic function
rzr3 reiuces to r3(l-r3), and the cubic function r2r3(r2-r3) reduces to
2r3(r3° 2 )(r3—1) along side Sl' [Compare with ¥ and ¥3 of Section 3 . ]

It is easily verified that the partial derivative with respect to t of the scaled

funetion I,lrzr3 has the values 1 and -1 at the vertices V2 and V3 respectively.

Similarly a[l,lrzr3(r2-r3)]/at1 has the value 1 at V, and V

2 3

Thus the function

(2) h k1 hl+kl-2ml

(29) = — 41,y b T, ry(r,oTy)

satisfies the residual interpolation requirements on side Sl; i.e., m(lz)

has zero values at VZ and V3 and its partial derivative with respect to t has

the values hl-ml, and k,-m, at v, and Vs respectively.

(2)

On side S2 we have r, = 0, and thus ®] and its tangential partial deriva-

tive are zero there. Similarly, since r; = 0 on side S3» w(IZ) and its tangential

partial derivative are also zero on side S3.

(2)

By appropriate cycling of indices,define i \nctions ) and w3

(2)

analagous
to w)

( 30) (2) Bk LA + B em Lr.  r. (F.iy = . )
vy Z iTi+1Ti-1 =z IRl TS LI TS ALETS BN S |

fori =1, 2, 3

JPL Technical Memorandum 33-770
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It follows that the function

3
_ (2)
(31) w = w(l) + igl wj

interpolates the nine items of data fi’ hi’ ki’ i=1, 2, 3.

Note further that  is exact for quadratic functions since if the data
fi’ hi’ ki' i=l, 2, 3, arise from a quadratic function it will follow that

hi-mi = -(ki-mi) i=1,2, 3
so the coefficients of the cubic terms in g vanish leaving ; as the unique

quadratic function matching the given data.

The function ;)- has a defect however. We require that the partial
derivative normal to any side must be a linear function along that side. The
cubic functions Tt -l(ri+l-ri-1)’ i=1, 2, 3, do not have this property and

thus, in general, y does not.

The remedy, described in Goé&l [1968), is to introduce correction
functions Py i=1, 2, 3, The function Py is required to be zero on ali three
sides of the triangle. It follows that its firs: partial derivatives in all direc-
tions at each vertex are zero. It is further required that the normal derivatives
of P relative to sides Si+l and Si-l be zero on those sides respectively,
while the normal derivative of N relative to side Si is to be a quadratic

function along that side. Specifically we can require that

(32) 2p;fam; = rql-r ) g;/s
on side Si

By adding appropriate multiples of Py P2 and pytoa cubic function,
such as r2r3(r2-r3), one can construct a function whose normal partial der-
ivatives on each side are linear functions along the respective sides.

JPL Technical Memorandum 33-770 17
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This point will be further developed in the next three sections. In
Section 6 we determine the multiples of Py Py and P needed to correct the
function r2r3(r2-r3). In Sections 7 and 8, we discuss two distinct sets of

functions having the properties required of the pi's.

JPL Technical Memorandum 33-770
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6. Correcting the normal derivatives of g = r2r3(r2-r3)

Define

g) = Tpr3(rp7T3)
The partial derivatives of g, with respect to the ri‘s are
agllarl =0
dg,/dr, =2r,r, - rz
811°%2 2737 73

_ .2
ag1/5r3 =1, =-2r,ry

Ueing the expressions for ari/anj given in Table 2 , and evaluating on

the indicated sides we obtain:

2
(33) 3g, /3n, = [3(cy-c,)ry + 2(2c,mcq)rymc,y 1/(46)
on side Sl
(34)  dg,/3n = - 4 (1-r,)2/8
g1/°03 2 1
on side S2
(35) dg,/dn = r2/6
g)/9m; LT,
on side S3

We assume the availablity of C1 functions Py i=1, 2, 3, which

have zero values along all edges and satisfy
{ ri_l(l-ri_l)l.i/O if j=i

(36) api/an.
J 0 if j=i-1 or j=i+l

on side Si

We wish to determine coefficient oy dlZ’ and 0113 such that the function

B T 8) TP TPt ¥5P,

JPL, Technical Memorandum 33-770
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will have the property that for j =1, 2, 3, the normal derivative E\'gl/anj
is a linear function along side Sj‘ Comparing the quadratic terms in
Egs. (33), (34), and (35) with the quadratic term in Eq. (36) it follows that

the appropriate values for the alj's are

- ) 2 _ 21024242
) = 3legc,) /4] = 3(45-45)/4]

%z = -1
and

¥y q = 1

Using these values of the alj's one can obtain the following equations
showing the linear character of the normal derivatives of zlﬁ'l on the respective

sides:

B(Llﬁ’l)/anl = [(c3+c2)r3-cz]/6

on side Sl

(c3ry-c,r,) /8

k! T2
= tand, - tand,
. o~ - - - = =
3(4,8,)/3n, = 4 b (1-r ) /8 = bt /8
on side S2
= -r3/sin93
d -—
a(tlgl)/an3 zlz3r2/6 = rz/sinez

on side S3

Collecting the results of this section and cycling the indices ap-
propriately we define

20 JPL Technical Memorandum 33-770
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3042, - 42 )
~ . i+l i-1 -
(37) 8 = Tt )t 3 Pi=Pi+1%Pi-1

Each function E: has the same interpolatory properties as the simpler cubic
* function ri+1ri;;(ri+l-ri-l) at the three vertices and has the additional
property that Bgi /an is a linear function along side Sj for all i and j.

Therefore for our complete interpolation formula we replace

Eq ( 3)) by
3 h, -k, h, +k;-2m, .,]
(38) w =i§l rht 4yt Y T A4 :

JPL Technical Memorandum 33-770 21
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7. A set of rational correction functions, oy

Define

2 2 _ ) L
i = T T /0T e )] i=1,2,3

(39) p
This set of rational functions is discussed by Goél [1968] who attributes their
use in this context to Zienkiewicz [1957].

For convenience consider the single function

Py = rlrgrg / [(l-rz)(l-r3)]

Over the triangle, T, the denominator of p, vanishes only at the vertex Vo,
where v, = 1, and at \£Y where ry = 1. These are removable singularities
however since, for example, at V2 the numerator Laus a third order zero

(rl - 0 and ry = 0) and thus P has a second order zero at VZ' Similarly J
P vanishes to second order at V3. =

At all other ¢dge points it is clear that p, vanishes because it contains

Ty Ty and ryas factors.

To verily that the normal partial derivatives of Py have the necessary

properties compute

apllarl pl/rl

?p,/3r, = (Z-rz)pll[rz(l-rz)]

3p, /3ty = (271400, /[r4(1-1y)] o

Then using expressions for ari/bn. from Table 2 , one finds

22 JPL ‘wachnical Memorandum 33-770
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]
Bpllbnl = r3(l-r3)tl/5 i
on side Sl 3
[ 3p,/3n, =0 i
: on side S, ;
: ';
T i
1 3p,/3n,4 <0 i
on side 53 1
;
- H
}
It is thus verified that the rational functions of Eq(39) can be used i
4
as the coriection functions CH described in Section 5.
. To compute values of Py i=1, 2, %, assume values ox T,
i=1, 2, 3, and ;
40 = i =

‘ (40 ) ® = Tie1Ti-l i=12,3
- ' are given. One then computes :
V= :
8 A i
Ir. = l-r- 1= l, 2, 3 .
i i :

{1f any ?i = 0 branch to handle the spzcial trivial case of

P

interpolation at a vertex)
~ ~ .
py = wii/(riﬂri_l) i=1,2,3

Thus the computation of the rational p.l’s requires 7 multiplications, 3 additions,

3 divisions, and 3 zero tests.

&
g
A X
TN
9
Ry
5
i
..
. .\l
E)

BE. %

o
s
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8. A set cf piecewise cubic correction functions, P

Define
ri[6ri+1ri_l+l‘i(5ri‘3)]/6 if r, = min {rl, T, r3]
41 = 2 - : o
(%4 p; ri (T * 3T )/6 i r, = minlr, 1, x4l
re (-r. + 3r.,,)/6 if r. . = min{r,, r,, r,}
i-1 i-1 i+l i-1 1’ "2’ 73

for i=1, 2, 3
Each function Ps consgists of a set of three cubic functions which match with
C:l continuity along internal boundary lines connecting the vertices to the
centroid of the triangle . T. Tkis set of functions is discussed by Goé&l [1968]
who attributes their use in this context to Clough and Tocher [1965].

Along side S1 we have r = min{rl, Ty r3} and thus

Py = r1[:6r2r3 + rl(Srl - 3)1/6

In this region the derivatives Bpllbri are given by

2
apllarl = [6r2r3 + 15r1 - 6r1]/6
3p,/3r, = rr,
ap1/3r3 = T,

Using the expressions for bri/bnl from Table 2 , we find

apllanl ! = r3(1-r3)l.1/6
on side Sl

It can also be verified tl.~*

24 JPL Technical Memorandum 33-770
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Bpl/anz

on side S2

and

Bpllan3

on side S3

Thus the piecewise cubic functions of Eq (41) have the properties need for

use as the correction functions pi of Section 5.

If Eq (41) is used in a computer program the usual situation will be

that for one set of values of r,, T, and r, the program must compute values

3
of Pyr Py and P3e In this context the following restatement of Eq(41) is

useful:

Let m be an index such that r__ = min[r , 'y, T } Then
m 1 2 3

’m ~ rm[()rm‘Hrm-l+ 1.m(srr’rx-:;)]/6
[ = r‘2 (-r _+3r y/6
m+1l m m m-1
= f2 3 /6
p - rm(-rm+ 1.m«l-l)
m-1

To compute values of Py i=1, 2, 3, given . i=l, 2, 3, and
5 = TiTi-1 i=1,2,3

the following steps can be used:

Find m such that ro = min{rl, Ty, Tyl

NN
= Z'm
= 1
b «- 3 rm
JPL Technical Memorandum 33-770 25
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I = rm(cpm+-3— a) - a
Pmel T a(rm--l - b)
Pm-1 1= Ty 7 b)

Two compares are required to determine m. Counting these as additions,
the compatation of the piecewise cubic correction functions, Py requires

seven multiplications and six additions.
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9. Transforming formulas to algorithms

Assume that data (x., y., f., £ ., f ), i- 1, 2, 3 is given, :
i i TP ¢, i1 Ty, i :

where (xi, yi) specifies the coordinates of the vertex Vi and (fi, fx i fy i)

’ ]
specifies the value of the function and its first partial derivatives with respect
to x and y at the vertex Vi. The vertices Vi should not be colinear. Either

counterclockwise or clockwise ordering of the vertices is acceptable.

Further assume a coordinate pair, (x, y), is given at which an inter-
polated value, w, is to be computed. The point (x,y) should not be exterior

to the triangle T having vertices Vl. \FX and V3. ;

We will describe the interpolation algorithm in three phases. Phase l

2 sl 1, ande, i=1, 2, 3.
1 1 1

Phase 2 will be the computation of the pi's using either the method of Section 7

will compute the preliminary quantities, U, Vo )

or of Section 8 . Phase 3 will complete the interpolation. We will describe

three versions of Phase 3.

All index expressions such as i+l and i-1 must be in erpreted
cyclicly so that the resulting index value is 1, 2, or 3. The name 'det" is
used to indicate computation of the determinant of a matrix. Phase 1 of the

algorithm proceeds as follows:

Begin Phase 1

YT ¥ T N |

Vi T Vi1 T Vil i=1,2,3 ‘
2 i

Ll - ui + Vl '§

4

¥

§ = det |"1 Y2 %

{Test for the error condition, 8§=0, indicating colinearity of the

of the vertices. }
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1
~
y = ¥Ym
-1 Fuz %
r, := 8 det v ~
Va7
Ma X
S | 3
ry := § “det v ;]
L
ry := l-(rz+ r3)

{If one wishes to test for the possibility that (x, y) is exterior to the
triangle the test can be made here. The condition r, < 0 for any i

indicates that (x, y) is exterior to the triangle. ]

® T TiaTi-l i=1, 2,3

End Phase 1

Note that Phase 1 requires 17 mult.plications, 16 additions, and one division.

Phase 2 consists of the computation of the pi's using either the
method 7 Section 7 or of Section 8. We proceed to the discussion of Phase 3.

The divisor l‘i in Eq.(27), and (28) will cancel with the multiplier l.i
in Eq (38). Thus instead of computing hi and ki we will compute quantities
o~
and K, suchthat h =% /s and k =K /L.

1

Version 1 of Phase 3 is the following:
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Phase 3, Version 1

~
hy = i vl in
£ £
g =i Yl i=1, 2,
2 2
~ . (¢ -r ) +3 Li{'l-ti-l _ +
B % r17T )9 r: i~ Piy1 T P
i
3 1 ~ ~ ~ o~

=L fr.ta(b-R)p. + [oh tk)-f . +L..]F

wosE ATl e L ) T T ha g

Phase 3, Version l,requires 36 multiplications, 42 additions, and 3 divisions.
The computation can be re-

This leads to

This includes six multiplications by one half.
arranged so that there is only one multiplication by one half.
what we will call Phase 3, Version 2 which requires 31 multiplications, 43

additions, and 3 divisions.

Version 2 differs from Version 1 only in the expression for w

which  changes to:
“Fe) ta g R +9) + %(E -
17 Biy) Y7 B OB (8 e+ K(g - @)

From this point it takes only a little more rearran~- nent to obtain a

formulation which explicitly uses cardinal functions for the give . data
(fi’ f i f .), i=1, 2, 3 This formulation, which we will call Phase 3,

x, y, i
Version 3, uses the same number of multiplications, additions, and divisions

as Version 2,

JPL Technical Memorandum 33-770
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Phase 3, Version 3

~ .= -r Y.+ 3_f_;.l;_zj:i - +
g, 7 (rg 7T 2 Pi"Pit1 T Pi-1
i

p, = Eto; i=l 203
4y = &y

= r. +73 - g
@; T T Bl T Bin)
~ Y
By % YigPiy * 9% i=1,23
o~ .- +
Yi 5 ViaPi-e1l T Vin%ia

Version 3 is particularly efficient for the case in which there are a
number of functions to be interpolated at the same interpolation point, (x, y).
In such a case only the final formula for w must be recomputed for each

function to be interpolated.

~/
The explicit computation of the cardinal functions, ;) % i’ and

7i , as provided by Version 3, is needed in applications in which the quantities

oo

P fx i’ and fY . are unknowns to be solved for. This is the situation in the
1 ]
finite element methods for solving partial differential equations and in the fitting

of a smooth surface to noisy data.
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10. The method described in Goél [1968]

For comparison with the results of Section 9 we will give a brief
description of the interpolation method given in Go& [1968 }. This method
is attributed by Go&l to Clough and Tocher [1965] and Zienkiewicz [1967].

We refer primarily to Eq (28) and (34) of Go&l [1968]). The fol-

lowing change of notation will convert Go&ls symbols to ours.

Goé&l's notation Notation of this paper
x' r,
y' Ty
1-x'-y! T
Py -p; /6
A A A
al, Bl. Y1 di! Bi’ Y1
@, By Y @p B Yy
A 8/2
L ? Ci Li» cl

We will indicate precomputation of the common .ubexpressions in
Go&l's formulas in order to provide a basis for obtaining a realistic operation
count. The quantities computed in Phases 1 and 2 [see Section 9 ] are all
needed for Goé&l's formulas so we will assume these computations have been

. done and proceed to describe Phase 3,
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Phase 3, Go&l

2
Ny o= ory ey, -3
~ 2
by = eyl
v N9
& =1 2 2 -
= LMy Nyt 2 DRt 2Ry F ey W]
A 1 . )
By = r®y vz 0¥ ey - 505 t305] i=1,2, 3
N 1
0 = @ tz (Ve 3yt 56y
a, = &, - (p +p. Mu.,, ,u +v., . V. 1)
A 17 g F P M9 T YY)
B, := A’B\_ A+l5( Y .+ Iy i=1,2, 3
LT Bt Vi r g v Py YRy e S

- 2 - A - l o~ P
Vi T ViaBy T VielY Tz 0 WPin T %Pl
3

wooas i§l (o +£ B+ E 5 Y)

Assuming the quantities %—6, 3pi, and Spi' would be computed only
once each, the operation count for Fhase 3, Goé&l, is 71 multiplicaticns,

81 additions, and 3 divisions.

It can be verified, by the appropriate tedious algebra, that a;, Bi’
and ‘vi as defined above are identical with @ %‘é'i, and -;-\71 as defined in
Phase 3, Version 3 [Section9 ], Thus the interpolated value, W, is the same

by either method.
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11. Summary of operation counts

%
i
¥

Multiplications | Additions |Divisions
Phase 1 17 16 1
Phase 2 using rational pi's 7 3 3
Phase 2 using piecewise
cubic pi's 7 6 c
Phase 3, Version 1 36 42
Phase 3, Versions 2 or 3 4 31 43
Phase 3, Goé&l 71 81
Totals using piecewise cubic
pi's :
Version 1 60 64 4
Versions 2 or 3 55 65 4
Goél 95 103 4

If we weight the multiplications, additions, and divisions in the ratio
2:1:6, then the operation count for Versions 2 or 3 is 63% of the count for Goél's

version,
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